Monday, October 3, 2016

ARTIFICIAL NEURAL NETWORK (ANN)



Pengertian Neural Network (NN)
Neural Network adalah prosesor yang terdistribusi paralel, terbuat dari unit-unit yang sederhana, dan memiliki kemampuan untuk menyimpan pengetahuan yang diperoleh secara eksperimental dan siap pakai untuk berbagai tujuan (Rajasekaran, 2005).
Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.
Fungsi dari Neural Network diantaranya adalah:
1.      Pengklasifikasian pola
2.      Memetakan pola yang didapat dari input ke dalam pola baru pada output
3.      Penyimpan pola yang akan dipanggil kembali
4.      Memetakan pola-pola yang sejenis
5.      Pengoptimasi permasalahan
6.      Prediksi

Sejarah Neural Network
Perkembangan ilmu Neural Network sudah ada sejak tahun 1943 ketika Warren McCulloch dan Walter Pitts memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi.

Gambar 2.1 McCulloch & Pitts, penemu pertama Neural Network
Hal ini dilanjutkan pada penelitian yang dikerjakan oleh Rosenblatt pada tahun 1950, dimana dia berhasil menemukan sebuah two-layer network, yang disebut sebagai perceptron. Perceptron memungkinkan untuk pekerjaan klasifikasi pembelajaran tertentu dengan penambahan bobot pada setiap koneksi antar-network.

Gambar 2.2 Perceptron

Keberhasilan perceptron dalam pengklasifikasian pola tertentu ini tidak sepenuhnya sempurna, masih ditemukan juga beberapa keterbatasan didalamnya. Perceptron tidak mampu untuk menyelesaikan permasalahan XOR (exclusive-OR). Penilaian terhadap keterbatasan neural network ini membuat penelitian di bidang ini sempat mati selama kurang lebih 15 tahun. Namun demikian, perceptron berhasil menjadi sebuah dasar untuk penelitian-penelitian selanjutnya di bidang neural network. Pengkajian terhadap neural network mulai berkembang lagi selanjutnya di awal tahun 1980-an. Para peneliti banyak menemukan bidang interest baru pada domain ilmu neural network. Penelitian terakhir diantaranya adalah mesin Boltzmann, jaringan Hopfield, model pembelajaran kompetitif, multilayer network,  dan teori model resonansi adaptif.
Untuk saat ini, Neural Network sudah dapat diterapkan pada beberapa task, diantaranya classification, recognition, approximation, prediction, clusterization, memory simulation dan banyak task-task berbeda yang lainnya, dimana jumlahnya semakin bertambah seiring berjalannya waktu.

Konsep Neural Network
1.      Proses Kerja Jaringan Syaraf Pada Otak Manusia
Ide dasar Neural Network dimulai dari otak manusia, dimana otak memuat  sekitar 1011 neuron. Neuron ini berfungsi memproses setiap informasi yang masuk. Satu neuron memiliki 1 akson, dan minimal 1 dendrit. Setiap sel syaraf terhubung dengan syaraf lain, jumlahnya mencapai sekitar 104 sinapsis. Masing-masing sel itu saling berinteraksi satu sama lain yang menghasilkan kemampuan tertentu pada kerja otak manusia.
Gambar 2.3 Struktur Neuron pada otak manusia

Dari gambar di atas, bisa dilihat ada beberapa bagian dari otak manusia, yaitu:
1.      Dendrit (Dendrites) berfungsi untuk mengirimkan impuls yang diterima ke badan sel syaraf.
2.      Akson (Axon) berfungsi untuk mengirimkan impuls dari badan sel ke jaringan lain
3.      Sinapsis berfungsi sebagai unit fungsional di antara dua sel syaraf.
Proses yang terjadi pada otak manusia adalah:
Sebuah neuron menerima impuls dari neuron lain melalui dendrit dan mengirimkan sinyal yang dihasilkan oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. Kekuatan sinapsis bisa menurun/meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold).

2.        Struktur Neural Network
Dari struktur neuron pada otak manusia, dan proses kerja yang dijelaskan di atas, maka konsep dasar pembangunan neural network buatan (Artificial Neural Network) terbentuk. Ide mendasar dari Artificial Neural Network (ANN) adalah mengadopsi mekanisme berpikir sebuah sistem atau aplikasi yang menyerupai otak manusia, baik untuk pemrosesan berbagai sinyal elemen yang diterima, toleransi terhadap kesalahan/error, dan juga parallel processing.

Gambar 2.4 Struktur ANN

Karakteristik dari ANN dilihat dari pola hubungan antar neuron, metode penentuan bobot dari tiap koneksi, dan fungsi aktivasinya. Gambar di atas menjelaskan struktur ANN secara mendasar, yang dalam kenyataannya tidak hanya sederhana seperti itu.
1.      Input, berfungsi seperti dendrite
2.      Output, berfungsi seperti akson
3.      Fungsi aktivasi, berfungsi seperti sinapsis
Neural network dibangun dari banyak node/unit yang dihubungkan oleh link secara langsung. Link dari unit yang satu ke unit yang lainnya digunakan untuk melakukan propagasi aktivasi dari unit pertama ke unit selanjutnya. Setiap link memiliki bobot numerik. Bobot ini menentukan kekuatan serta penanda dari sebuah konektivitas.
Proses pada ANN dimulai dari input yang diterima oleh neuron beserta dengan nilai bobot dari tiap-tiap input yang ada. Setelah masuk ke dalam neuron, nilai input yang ada akan dijumlahkan oleh suatu fungsi perambatan (summing function), yang bisa dilihat seperti pada di gambar dengan lambang sigma (∑). Hasil penjumlahan akan diproses oleh fungsi aktivasi setiap neuron, disini akan dibandingkan hasil penjumlahan dengan threshold (nilai ambang) tertentu. Jika nilai melebihi threshold, maka aktivasi neuron akan dibatalkan, sebaliknya, jika masih dibawah nilaithreshold, neuron akan diaktifkan. Setelah aktif, neuron akan mengirimkan nilai output melalui bobot-bobot outputnya ke semua neuron yang berhubungan dengannya. Proses ini akan terus berulang pada input-input selanjutnya.
ANN terdiri dari banyak neuron di dalamnya. Neuron-neuron ini akan dikelompokkan ke dalam beberapa layer. Neuron yang terdapat pada tiap layer dihubungkan dengan neuron pada layer lainnya. Hal ini tentunya tidak berlaku pada layer input dan output, tapi hanya layer yang berada di antaranya. Informasi yang diterima di layer input dilanjutkan ke layer-layer dalam ANN secara satu persatu hingga mencapai layer terakhir/layer output. Layer yang terletak di antara input dan output disebut sebagai hidden layer. Namun, tidak semua ANN memiliki hidden layer, ada juga yang hanya terdapat layer input dan output saja.

Perbandingan Jaringan Syaraf Tiruan Dengan Metode Konvensional
Jaringan Syaraf Tiruan memiliki pendekatan yang berbeda untuk memecahkan masalah bila dibandingkan dengan sebuah komputer konvensional. Umumnya komputer konvensional menggunakan pendekatan algoritma (komputer konvensional menjalankan sekumpulan perintah untuk memecahkan masalah). Jika suatu perintah tidak diketahui oleh komputer konvensional maka komputer konvensional tidak dapat memecahkan masalah yang ada. Sangat penting mengetahui bagaimana memecahkan suatu masalah pada komputer konvensional dimana komputer konvensional akan sangat bermanfaat jika dapat melakukan sesuatu dimana pengguna belum mengatahui bagaimana melakukannya.

Gambar Sebuah Sel Syaraf Sederhana

Jaringan Syaraf Tiruan (Neural Network) dan suatu algoritma komputer konvensional tidak saling bersaing namun saling melengkapi satu sama lain. Pada suatu kegiatan yang besar, sistim yang diperlukan biasanya menggunakan kombinasi antara keduanya (biasanya sebuah komputer konvensional digunakan untuk mengontrol Jaringan Syaraf Tiruan (Neural Network) untuk menghasilkan efisiensi yang maksimal. Jaringan Syaraf Tiruan (Neural Network) tidak memberikan suatu keajiban tetapi jika digunakan secara tepat akan menghasilkan sasuatu hasil yang luar biasa.


Contoh Kegunaan Artificial Neural Network/Jaringan Saraf Tiruan Dalam Kehidupan Nyata :

  •         Perkiraan Fungsi, atau Analisis Regresi, termasuk prediksi time series dan modeling.
  •       Klasifikasi, termasuk pengenalan pola dan pengenalan urutan, serta pengambil keputusan dalam pengurutan.
  •        Pengolahan data, termasuk penyaringan, pengelompokan, dan kompresi.
  •          Robotik
Contoh Penerapan Artificial Neural Network (ANN)

1.      Optical Character Recognation
Salah satu penerapan Artificial Neural Network adalah digunakan untuk  pengenalan karakter optik yang dikenal dengan Optical Character Recognation.
Optical Character Recognition merupakan suatu teknologi yang memungkinkan mesin (komputer) secara otomatis dapat mengenali karakter lewat suatu mekanisme optik. Proses yang dilakukan adalah mengubah citra yang mengandung karakter-karakter di dalamnya ke dalam informasi yang dapat dimanipulasi oleh mesin.

2.      Prediksi Pasar Saham
Fluktuasi dari harga saham dan index saham adalah contoh lain yang kompleks, multidimesi tetapi dalam beberapa kondisi tertentu merupakan phenomena yang dapat prediksi. Jaringan Syaraf Tiruan telah digunakan oleh analis teknik untuk membuat prediksi tentang pasar saham yang didasarkan atas sejumlah faktor seperti keadaan masa lalu bursa yang lain dan berbagai indikator ekonomi.

3.      Monitoring Kondisi Mesin
Jaringan Syaraf Tiruan dapat digunakan untuk memangkas biaya dengan memberikan keahlian tambahan untuk menjadwalkan perawatan mesin. Jaringan Syaraf Tiruan dapat dilatih untuk membedakan suara sebuah mesin ketika berjalan normal (“false alarm”) dengan ketika mesin hampir mengalami suatu masalah. Setelah periode pembelajaran, keahlian dari Jaringan Syaraf Tiruan dapat digunakan untuk memperingatkan seorang teknisi terhadap kerusakan yang akan timbul sebelum terjadi yang akan menyebabkan biaya yang tidak terduga.





References :


0 comment:

Post a Comment

 
;